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Depending on the parameters of two-dimensional excitable or oscillatory media rigidly rotating or mean-
dering spiral waves are observed. The transition from rigid rotation to meandering motion occurs via a
supercritical Hopf bifurcation. To stabilize rigid rotation in a parameter range beyond the Hopf bifurcation, we
propose and successfully apply a proportional control algorithm as well as time delay autosynchronization.
Both control methods are noninvasive. This allows for determination of the parameters of unstable rigid
rotation of spiral waves either for a model or an experimental system. Using the Oregonator model for the
light-sensitive Belousov-Zhabotinsky reaction as a representative example we show that quite naturally some
latency time appears in the control loop, and propose an efficient method to overcome its destabilizing
influence.
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I. INTRODUCTION

Spiral waves represent typical two-dimensional spa-
tiotemporal patterns in nonlinear media. They have been ob-
served in a large variety of excitable or oscillatory reaction-
diffusion systems. Well-known examples include cardiac
muscle tissue �1,2�, aggregating slime-mold cells �3�, cata-
lytic surface reactions as the oxidation of carbon monoxide
on a platinum single crystal surface �4�, or concentration
waves in the Belousov–Zhabotinsky �BZ� reaction �5–12�.

Rotating spiral waves induce spatio-temporal oscillations
in the whole medium. Different regimes of rotation have
been observed for spiral waves which can be characterized
by the trajectory described by the spiral tip �9,11�. The sim-
plest case is a periodic regime called rigid rotation with a tip
moving along a circle. Rigidly rotating spiral waves have
constant shape and rotate uniformly. Under certain condi-
tions a transition from one-frequency periodic to two-
frequency quasi-periodic motion occurs where the spiral tip
meanders rather than follows a circular orbit. Meandering
spiral waves appear in two types called outward and inward
meandering depending on whether their tip trajectory forms
a flower-like orbit with loops pointing outwards or inwards,
respectively. More complicated hypermeandering motion has
been reported that includes at least three incommensurate
frequencies �13�. Also, the existence of chaotic dynamics
cannot be excluded �14�.

The theory of spiral waves has been intensively developed
during the last years �15–26� but is still far from being com-
plete. It was shown that the transition from rigid rotation to
meandering motion is a supercritical Hopf bifurcation. Be-
yond the bifurcation point, rigidly rotating spiral waves are
still a solution of the underlying equations which, however,
is unstable. As for any complicated nonlinear system a very
important step in the analysis of spiral dynamics is to deter-
mine the parameters of rigidly rotating spirals considered as
steady states in a corotating reference frame. These param-
eters as, for example, their rotation frequency and their core
radius can be computed by use of standard procedures, if the
underlying model equations are known �10,16,21,26�. How-
ever, up to now there are no methods to identify the param-

eters of these unstable solutions in experimental systems. To
determine these parameters an unstable two-dimensional
spatiotemporal pattern has to be stabilized by use of a non-
invasive control method.

Stabilization of strongly meandering spiral waves can
have also a practical meaning, since such spirals break down,
producing new interactive vortices that evolve into spa-
tiotemporal irregularity, e.g., cardiac arrythmias �14�.

Recently, proportional feedback control �PFC� has been
successfully applied to stabilize wave segments propagating
in a two-dimensional excitable medium �27�. In a circular
domain, PFC can force a rigidly rotating spiral wave to move
towards the domain center �28�. However, in application to
meandering spiral waves this type of feedback control has
not been studied so far.

On the other hand the instability of rigid rotation can be
viewed as a transition from a stable to an unstable periodic
orbit �UPO� �16,20–24�. Noninvasive feedback methods like
time delay autosynchronization �TDAS� �29,30� are success-
fully employed to stabilize UPOs in dynamical systems
�31–33�. TDAS is especially efficient and well-studied theo-
retically in the case when all dynamical variables can be
observed and controlled simultaneously �34�. Here the term
noninvasive refers to the fact that the intrinsic UPO is not
changed by the control term, and the control force vanishes
when the orbit is reached.

In spatially extended media either the system variables
can be monitored only at a finite number of points, or spa-
tially or temporally averaged variables are measured. The
control signal is usually applied locally at several points or
globally. In spite of these restrictions, there are many ex-
amples of successful control by TDAS in one-dimensional
media �35–39�. In two- or three-dimensional systems, only a
few examples for the stabilization of spatiotemporal patterns
by TDAS are known �40�.

In this paper, we study feedback-mediated stabilization of
rigidly rotating spiral waves in a parameter regime where in
the absence of feedback rigid rotation is unstable and mean-
dering spiral waves are observed. For stabilization we pro-
pose two noninvasive control methods, proportional and time
delayed feedback control, and demonstrate their successful
operation in application to spiral wave solutions obtained
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numerically from the Oregonator model for the light-
sensitive BZ medium. The latter has been widely used to test
feedback-mediated methods for the control of spiral wave
dynamics �15,41,42�.

Working with real systems, as a rule some control loop
latency is unavoidable. Latency effects can deeply influence
the operation of the control algorithm �43,44�. For the BZ
system we address this issue in some detail and propose a
method to compensate possible latency effects to facilitate
the experimental verification of our results.

II. THE MODEL

A prominent example for the propagation of spiral waves
is the light-sensitive BZ medium. Many experimental studies
devoted to the control of spiral wave dynamics have been
performed within this system. For our numerical simulations
we use the modified two-variable Oregonator model for the
BZ reaction given by the equations

�u

�t
=

1

�
�u − u2 − �fv + ��

u − q

u + q
� + Du�u , �1�

�v
�t

= u − v + Dv�v . �2�

Here, u�x ,y , t� and v�x ,y , t� represent the dimensionless con-
centrations of the activator bromous acid HBrO2 and the oxi-
dized form of the catalyst, respectively, q, f , and ��1 are
scaling parameters, and Du and Dv denote the diffusion con-
stants �45,46�. The photochemically induced bromide flow �
is assumed to be proportional to the applied light intensity.
Below, � will be considered as the main bifurcation param-
eter which governs the transition from rigidly rotating to
meandering spiral waves.

To obtain spiral wave solutions of the Oregonator model,
appropriate initial conditions have to be chosen for the nu-
merical integration of Eqs. �1� and �2� as described in �9�, for
example. Figure 1�a� shows isoconcentration lines of a rig-
idly rotating spiral wave computed with parameters q
=0.002, f =1.4, �=0.02, Du=1.0, Dv=0.6, and �=0.045. Ex-
cept for �, these parameters are kept fixed throughout the
paper. Simulations were performed by the forward Euler
method using the five-point finite-difference representation
of the Laplacian with a spacing �x=�y=0.125 O.s .u. �Or-
egonator space unit� and a time step �t=0.00125 O. t .u.
�Oregonator time unit�.

Solid and dash-dotted lines in Fig. 1�a� represent a snap-
shot of the isoconcentration lines of the u field at uc=0.35
and of the v field at vc=0.11, respectively. The spiral wave
rotates clockwise, and the spiral wave tip moves with con-
stant velocity along the boundary of the circular core shown
by the dashed line. As the velocity of the tip in the normal
direction to the core boundary is equal to zero, we can define
the tip coordinates from the intersection between isoconcen-
tration lines corresponding to two neighboring time instants t
and t+�t, as illustrated in Fig. 1�b�. We use this definition of
the spiral tip in our computations below.

Different parameters in the Oregonator model �1�, �2� re-
sult in rigidly rotating, meandering or hypermeandering spi-
ral wave solutions �10,12�. For fixed values of q, f , �, Du,
and Dv �see above�, the regime of rotation is uniquely de-
fined by the parameter �. The bifurcation scenario obtained
under variation of � is shown in Fig. 2. At �=0.035 the
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FIG. 1. �a� Isoconcentration lines of the u �solid line� and v field
�dash-dotted line� of a rigidly rotating spiral wave. The tip follows
the dashed circular trajectory. �b� Tip coordinates are obtained from
the intersection between two isoconcentration lines of the u field
corresponding to time t �solid line� and time t+50�t �dotted line�.
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FIG. 2. Tip path patterns obtained under variation of the bifur-
cation parameter �. In the meandering regime �cr1����cr2, rig-
idly rotating spiral waves are unstable.
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spiral is in the regime of rigid rotation. Increasing �, at �
=�cr1�0.047 a supercritical Hopf bifurcation occurs and
rigid rotation is replaced by outward meandering. When �
grows further, the regime of outward meandering transforms
to inward meandering. Finally, after crossing the threshold
�cr2�0.0643 of a second supercritical Hopf bifurcation,
rigid rotation is recovered again.

Following �47� we represent the tip path in the meander
regime as a superposition of two circular motions with radii
r1, r2, and frequencies �1, �2. In this representation the tip
coordinates are given by

x�t� = r1 sin��1t + �1� + r2 sin��2t + �2� + c1, �3�

y�t� = r1 cos��1t + �1� + r2 cos��2t + �2� + c2. �4�

A detailed analysis performed in �13,47� demonstrates the
validity and high accuracy of this representation near the
Hopf bifurcation. For rigid rotation we put r2=0. The param-
eters r1, r2, �1, and �2, in contrast to the constant parameters
�1, �2, c1, and c2, change under variation of �. To obtain
these dependencies we have fitted our numerical data for the
tip trajectories to the above equations.

The full line in Fig. 3�a� shows the sum r1+r2 as a func-
tion of �. As follows from Eqs. �3� and �4�, the sum deter-
mines the radius of an envelope surrounding the meandering
trajectory. The size of the meandering pattern tends to infin-
ity when � approaches the value �ll�0.0634. Then, the spi-
ral core drifts along a straight line. This regime marks the
transition from outward to inward meandering. The variation
of the frequencies �1, �2 with � is plotted in Fig. 3�b�. At
the first bifurcation point a second frequency �2�0 �dashed
line� appears, which is quite different from �1 �full line�.
This frequency decreases with increasing �, vanishes at �ll,
and becomes negative. The change in the sign reflects the
transition from outward to inward meandering. At �=�cr2,
this second frequency disappears as the meandering regime
ends and rigid rotation becomes stable again.

III. PROPORTIONAL FEEDBACK

Characteristic for rigid rotation is a constant distance r0
between the tip and the core center of the spiral wave. To
suppress the meandering instability, we propose to apply a
control force that is proportional to the difference between
the actual distance from an arbitrarily chosen reference point,
r�t�, and the desired radius r0 according to

��t� = �0 + F�t� = �0 + K�r0 − r�t�� . �5�

Here, F�t� denotes the control force and K is the feedback
strength. In experiments with the light-sensitive BZ medium,
this feedback loop can be realized by changing the intensity
of globally applied illumination accordingly; in this case �0
corresponds to some fixed background illumination. It is im-
portant for the control method that the radius r0 depends on
the background illumination �0. Let us assume first that the
relation r0=r0��0� is known. The more general case of an
unknown relationship will be considered later in Sec. V.

Figure 4�a� displays the tip trajectory calculated from Eqs.
�1� and �2� in the presence of PFC given by Eq. �5�. The

cross marks the reference point. Initially, when the feedback
strength is zero, the tip follows a path characteristic for out-
ward meandering �dashed line�. At t=25 O. t .u. the feedback
is switched on. Now, the tip moves along the full line dem-
onstrating that, after a short transient, the tip becomes at-
tracted to a circular orbit of radius r0 centered at the refer-
ence point. Thus rigid rotation is stabilized in a parameter
regime where it is unstable in the absence of feedback. In the
stabilized regime the control force vanishes, compare to Fig.
4�b�. Hence the proposed control method stabilizes an exist-
ing unstable periodic orbit �UPO� and does not induce a new
periodic solution.

We have performed such stabilization for different values
of the control parameter �0 within the meandering regime
�cr1����cr2. The dots in Fig. 3 represent the results ob-
tained for the core radius and the rotation frequency in the
feedback-stabilized regime. The quantitative analysis of the
simulation data shows that in the whole meandering regime
the radius of the stabilized trajectory is equal to r1 and its
frequency coincides with �1. Our results demonstrate that it
is possible to suppress the meandering instability noninva-
sively by means of global PFC. In the stabilized regime, the
whole medium oscillates periodically at the rotation fre-
quency of the spiral wave.
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FIG. 3. �a� The sum of the radii of a meandering tip trajectory
r1+r2 vs the control parameter �. The dotted line denotes the radius
r1 of unstable rigid rotation in the meandering regime. �b� Depen-
dence of the frequencies �1 �thick full line� and �2 �dashed line� on
�. The dots represent the frequency of unstable rigid rotation in the
meandering regime between the two Hopf bifurcations.
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In light-sensitive BZ media, instead of u the experimen-
tally accessible variable is v. As v is proportional to the
oxidized catalytic complex which has a lower absorption co-
efficient than the reduced complex, in transmitted light areas
with high �low� v concentration appear bright �dark�. Conse-
quently, in experiments with the BZ medium the coordinates
of the spiral tip have to be determined from the measured
data for the v field.

We have checked how this modification affects the opera-
tion of the feedback algorithm. Figure 5�a� shows the tip
trajectory obtained for conditions identical to those used in
Fig. 4�a� with the only exception that the tip coordinates are
calculated from the isoconcentration lines of the v field. Ob-
viously, under these conditions it is impossible to stabilize
rigid rotation in the meandering regime. Asymptotically, the
trajectory traced out by the spiral tip is not a circle, although
its symmetry center is located at the chosen reference point.
Moreover, in the asymptotic state the control force does not
vanish but exhibits undamped oscillations. Hence the

asymptotic trajectory represents a feedback-induced motion
rather than an UPO of the unperturbed system. The same
breakdown of the modified feedback algorithm has been ob-
served for other values of the control parameter �0 within the
meandering regime.

To overcome this problem, we propose a simple method
that allows one to reconstruct the u field approximately from
the v field. Taking into account that v is the slow variable,
we neglect the diffusion term in Eq. �2� and define the aux-
iliary field

ure�x,y,t� =
v�x,y,t� − v�x,y,t − 	�

	
+ v�x,y,t� . �6�

We set the parameter 	 equal to 0.05 O. t .u. which corre-
sponds to a time interval of about 1 s between two consecu-
tive pictures of the v field taken in the experiment. As fol-
lows from Fig. 6�a�, we succeeded in stabilizing rigid
rotation by proportional feedback, provided the tip coordi-
nates were determined from the reconstructed field ure. The
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FIG. 4. Stabilization of rigid rotation under proportional feed-
back control with tip coordinates defined from the u field �uc

=0.35, �0=0.06�. �a� Trajectory of the spiral tip without feedback
�K=0, dashed line� and under feedback control �K=0.005, full line�
which is switched on at t=25 O. t .u. The cross marks the reference
point. �b� Control parameter ��t� as a function of time; in the sta-
bilized regime the control force F�t� vanishes.
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FIG. 5. �a� Tip trajectory under proportional feedback control
with tip coordinates defined from the v field. The tip moves to the
neighborhood of the reference point �black cross�, however, rigid
rotation cannot be stabilized. �b� Undamped oscillations of the con-
trol force are observed in the asymptotic state.
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control force vanishes in the stabilized state and � becomes
equal to �0, compare Fig. 6�b�.

A closer inspection revealed that latency effects might be
responsible for the sensitivity of the control method to dif-
ferent procedures for the definition of the tip coordinates.
Note that � enters into Eq. �1� for the activator field of the
Oregonator model. Because of time scale separation a per-
turbation in � affects the inhibitor field with a certain time
delay. To give a rough estimate for the delay between u and
v in response to a � perturbation we stabilize rigid rotation
for a certain � value, say �0=0.06. With uc=0.35 and vc
=0.085 for the definition of the isoconcentration lines, the
radii of the circular tip trajectory calculated from the u and v
field are equal. When we switch off the feedback and in-
crease � from 0.06 to 0.061, the tip leaves the circular orbit.
Deviations from the circular orbit appear with some time
delay and grow initially linearly with time. The trajectory
determined from the v field responds with a larger time de-
lay. From the linear growth range we estimate a time delay
between u and v equal to 
uv�0.13.

To understand whether a control loop latency 
 equal to

uv is large enough to cause a stabilization failure at �0

=0.06, we replace F�t� in Eq. �5� by F�t−
�. Figure 7 dis-
plays the control diagram in the parameter plane spanned by
the feedback strength K and the control loop latency 
. As
expected the control domain shrinks with increasing latency
time. There exists an upper limit 
cr=0.12 for successful
stabilization which turns out to be smaller than 
uv�0.13.
This proves our conjecture that latency effects cause the
breakdown of stabilization as discussed before.

IV. TIME DELAY AUTOSYNCHRONIZATION

PFC is commonly used to stabilize unstable steady states.
For the stabilization of UPOs frequently other methods like
time delay autosynchronization �TDAS� �29� are employed.
Let us check whether this method is applicable to the stabi-
lization of the spiral wave pattern. In the framework of
TDAS, the control parameter � is determined as

��t� = �0 + F�t� = �0 + K�r�t� − r�t − ��� . �7�

To stabilize an unstable periodic orbit with TDAS the
time delay � has to be equal to the period of the UPO which
in general is unknown. In our simulations we use the values
for the rotation period of rigidly rotating spiral waves stabi-
lized previously under PFC.

One example for successful stabilization by TDAS is
shown in Fig. 8. As in Fig. 4, the dashed line denotes the
initial part of the simulation performed without control. After
the control force has been switched on at t=25 O. t .u., the
spiral wave is forced into the regime of rigid rotation �full
line�. In contrast to PFC the center of rigid rotation differs
from the chosen reference point, hence asymptotically the
distance r�t� is not a constant. Nevertheless, as with PFC, the
control force vanishes in the stabilized regime because the
actual distance r�t� in Eq. �7� oscillates with period T��.

To study the robustness of TDAS with respect to latency
effects, we account for some latency time 
 in the control
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FIG. 6. �a� Successful stabilization of rigid rotation by PFC
defining the tip coordinates from the reconstructed activator field
ure �Eq. �6� with 	=0.05�. The cross denotes the reference point.
�b� Time evolution of the control parameter ��t� demonstrating the
noninvasive character of the control.
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FIG. 7. K-
 diagram for proportional feedback control for �0

=0.06. Full circles �small dots� denote successful stabilization �fail-
ure of stabilization�, the boundary of the control domain determined
with steps of 0.0005 in the parameter K is marked by the solid line.
Tip definition is based on the u field.
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loop replacing F�t� in Eq. �7� by F�t−
�. In Fig. 9 the bound-
ary of the control domain for the Oregonator model �1�, �2�
subjected to TDAS is shown by the solid line. As for propor-
tional feedback, the control domain shrinks with 
, but the
critical latency 
cr is larger. As 
cr�
uv, it should be pos-
sible to stabilize rigid rotation with TDAS even when the tip
coordinates are defined from the isoconcentration lines of the
slower v field. Our simulations have confirmed this conjec-
ture. For suitably chosen control strength, TDAS operates
reliably as long as the effective latency 
+
uv is smaller than
the critical latency 
cr before it breaks down beyond this
limit.

V. COMPARISON OF THE FEEDBACK METHODS

So far we have demonstrated that both PFC and TDAS
are capable of stabilizing rigid rotation of spiral waves in the
meandering regime. Now, we summarize specific advantages
and disadvantages of these two control methods.

To apply PFC, in principle the reference radius r0 must be
known. However, we can add simple relaxational dynamics
for r0 according to

dr0

dt
=

1

��
�r�t� − r0� �8�

to the model �1�, �2� with feedback �5�. Provided that r0
changes on a characteristic time scale much larger than the
rotation period of the spiral wave ����T�, this additional
equation ensures that r0 is adapted automatically during
feedback-mediated stabilization. In the limit t→�, r0�t� ap-
proaches the previously unknown value r0. In all cases we
have checked that the feedback algorithm �5� with the ob-
tained value for r0 as the initial condition does not change
the UPO.

Before we can apply TDAS, we have to identify the pe-
riod of the UPO to be stabilized, i.e., the rotation period of
the spiral wave. Again, � can be determined solving an ad-
ditional equation equivalent to Eq. �8� when the control is
applied. For the stabilization of rigidly rotating spiral waves,
the determination of � turned out to be numerically more
intricate than that of r0.

For comparison we present in Fig. 10 the control dia-
grams for PFC and TDAS, which for the given value of the
parameter �0 do not overlap. Feedback strengths required for
successful stabilization are smaller with TDAS. In return, the
control range in K is larger for PFC. The admitted range of
control loop latencies was found to be larger for TDAS
which in this respect turns out to be more robust than PFC.
Therefore we succeeded in stabilizing rigid rotation with
TDAS using information from the slow v field in calculating
the tip coordinates, but we failed when we applied PFC due
to a control loop latency which was beyond the control
boundary.

Note that in PFC the core center of the stabilized rigidly
rotating spiral wave always coincides with the arbitrarily
chosen reference point. In this respect PFC is capable to
move a spiral core to a desired position in the medium.

25 30
x [O.s.u.]

26

28

30

32

y 
[O

.s
.u

.]
(a)

0 20 40 60 80
t [O.t.u.]

0.06

0.0605

φ

(b)

FIG. 8. Stabilization of rigid rotation of a spiral wave applying
TDAS with tip location defined from the u field. Parameters: �
=4.015 O. t .u., K=0.001, and �0=0.06. �a� Trajectory of the spiral
tip with and without feedback �dashed and full line, respectively�.
The cross denotes the reference point. �b� Time evolution of the
control parameter ��t�.
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FIG. 9. Control domain for TDAS with tip location defined by
the u field for �0=0.06 and �=4.015 O. t .u. Full circles denote
successful stabilization, small dots denote failure of stabilization.
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The control force vanishes in PFC only if r�t� asymptoti-
cally approaches a constant value r0 characteristic for rigid
rotation. In contrary, in TDAS periodic oscillations of r�t�
are allowed in the stabilized state. Hence it might be possible
to stabilize more complicated rotational regimes of spiral
waves by TDAS as, for example, meandering spiral waves in
the regime of hypermeandering.

VI. SUMMARY AND OUTLOOK

In this paper, we have presented an example for the sta-
bilization of a two-dimensional spatiotemporal pattern by
global noninvasive feedback control. A meandering spiral
wave is forced into the regime of rigid rotation which still
exists but is unstable in the absence of feedback. This allows
for determination of the core radius and rotation frequency of
unstable rigid rotation without explicit use of the model
equations. This opens new perspectives for corresponding
experimental studies. Both quantities turn out to be equal to
one of the two radii or frequencies, respectively, of spiral
meandering which occurs when rigid rotation becomes un-
stable via a supercritical Hopf bifurcation. It is important to
note that from the stabilized two-dimensional spatiotemporal

pattern, besides the core radius and the rotation frequency,
other characteristics can be obtained as, for example, the
spatial profile of the unstable wave or the spatial gradient
close to the spiral core. This information could be very help-
ful in testing the validity of various theoretical approaches to
spiral wave dynamics �17,18,25�.

The commonly accepted opinion is that the method of tip
definition has no pronounced effect on results about spiral
wave dynamics as, for example, the bifurcation diagram of
the rotation regimes �12�. In the context of feedback-
mediated stabilization the situation turns out to be quite dif-
ferent. Sometimes stabilization fails when the tip definition is
based on the slow inhibitor instead of the fast activator field.
We show that one possible reason for this is the influence of
a control loop latency in the feedback loop. To overcome this
difficulty we propose an approximate method to reconstruct
the activator field from the inhibitor field. This method works
well for the Oregonator model of the light-sensitive BZ re-
action where only the slow field is experimentally accessible.

Two different noninvasive control methods, proportional
feedback control �PFC� and time delayed autosynchroniza-
tion �TDAS�, have been considered in this paper. While both
methods allow one to stabilize the wave pattern in a broad
range of parameters, a more detailed comparison reveals spe-
cific advantages and disadvantages of each method as dis-
cussed in Sec. V. PFC requires the determination of some
reference radius r0 which is not as difficult as finding the
appropriate delay time � necessary for TDAS. Moreover,
PFC works in a comparably larger range of the feedback
strength K, and stabilizes the core center at the reference
point. In comparison with that, TDAS is less sensitive to
latency effects as the control domain extends to larger la-
tency times, and leads to successful stabilization already at
smaller control forces. In principle, TDAS should be able to
stabilize two-periodic rotation regimes as meandering spiral
waves in the parameter range of hypermeandering �12�.

The experimental verification of the predicted stabiliza-
tion of rigid rotation by noninvasive feedback control re-
mains a challenge for future work. We hope that our results
also motivate further development of the general theory of
feedback-mediated stabilization of other two-dimensional
spatiotemporal patterns.
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